Excitatory inward sodium current
iNa = (4 m3h j + 0.003)(Vm - 50)
m∞(V), h∞(V),
j∞(V) and
20 τm(V),
τh(V)/20,
τj(V)/100 ms are ploted below
here -100 ≤ V ≤ 50 (mV), 0 ≤ y ≤ 1.
So the minimal times are τm (-85) ~ 0.012,
τh (-85) ~ 1 ms.
Slow inward current is
is = 0.09 d f (Vm - Es ),
Es = -82.3 - 13.0287 In Ca .
Outward potassium current ix
ix = x Ix ,
Ix = 0.8(exp[0.04(Vm + 77)] - 1) / exp[0.04(Vm + 35)].
d∞(V), f∞(V),
x∞(V) and
τd (V)/50,
τf (V)/1000,
τx(V)/1000 ms are ploted below
-100 ≤ V ≤ 50 (mV), 0 ≤ y ≤ 1.
Outward potassium current iK
iK = 0.35{4(exp[0.04(Vm + 85)] - 1) /
(exp[0.08(Vm + 53)] + exp[0.04(Vm + 53)])
+ 0.2(Vm + 23) / (1 - exp[-0.04(Vm + 23)])}.
The model may be modifed by speeding up the calcium dynamics (i.e. d, f gates) by the mod value.
Vm(mV)
dt(ms)
it
mod
iNa/30
ix
iK
is
Ca
x
m
h
j
d
f
-100 ≤ Vm ≤ 50, 0 ≤ Es ≤ 150 (mV),
0 ≤ y ≤ 1. The script makes 1000 it time steps dt.
It is stable for dt ≤ 2 τmin = 0.025 ms
(see Integration schemes for the fastest m gate).
[1] G. W. Beeler and H. Reuter Reconstruction of the action potential of ventricular myocardial fibres J. Physiol. 268 177 (1977)
Appendix
τy = 1/(αy + βy ),
y∞ = αy /(αy + βy ),
α = (C1 exp[C2 (Vm + C3)] + C4 (Vm + C5)) /
(exp[C6 (Vm + C3)] + C7),
the same equation as for α is used for β.
Const (msec-1) |
C1 (msec-1) |
C2 (mV-1) |
C3 (mV) |
C4 (mV.msec)-1 |
C5 (mV) |
C6 (mV-1) | C7 |
αx | 0.0005 | 0.083 | 50 | 0 | 0 | 0.057 | 1 |
βx | 0.0013 | -0.06 | 20 | 0 | 0 | -0.04 | 1 |
αm | 0 | 0 | 47 | -1 | 47 | -0.1 | -1 |
βm | 40 | -0.056 | 72 | 0 | 0 | 0 | 0 |
αh | 0.126 | -0.25 | 77 | 0 | 0 | 0 | 0 |
βh | 1.7 | 0 | 22.5 | 0 | 0 | -0.082 | 1 |
αj | 0.055 | -0.25 | 78 | 0 | 0 | -0.2 | 1 |
βj | 0.3 | 0 | 32 | 0 | 0 | -0.1 | 1 |
αd | 0.095 | -0.01 | -5 | 0 | 0 | -0.072 | 1 |
βd | 0.07 | -0.017 | 44 | 0 | 0 | 0.05 | 1 |
αf | 0.012 | -0.008 | 28 | 0 | 0 | 0.15 | 1 |
βf | 0.0065 | -0.02 | 30 | 0 | 0 | -0.2 | 1 |