"Daisy" Bouquet Dataset demo

  it

Pav = 1/N Σ Pi,   Disp = 1/N Σ(Pi - Pav)2,   Error = (Disp/N)1/2.

"6 Daisies bouquet" with cubic symmetry is used. Press "iterate" to collect 1000 daisy-class (985) probabilities. See console for more detailes. CNN "GraphModels" from tfhub.dev are used.

Numbers

CNN      Pav Daisy   Pav Bouquet   T ms
________________________________________
v2_0.35    0.29        0.28        18.8
v2_0.50    0.54        0.37        19.5
v1_1.00    0.74        0.48        24.5
v1_1.00*   0.48
v2_1.00    0.47        0.56        24.7
v2_1.40    0.56        0.41        30.7
ResNet     0.74        0.95        59.2
* I get Pav = 0.48 for the same v1_1_224 "LayersModel" at 'https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_1.0_224/model.json'. See "Daisy" weight quantization test.

Times are measured on HP Laptop with AMD Ryzen 5 3500U + Vega8.

"Daisy" Bouquet - classification test is much better than the single "Daisy" one. If some flowers fall into the blind zone, then we see contribution from the rest!


TFjs notesupdated 6 Dec 2019